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1.INTRODUCTION.

Nowadays, in most of hyperspectral signal processing applications it is necessary to determine and quantify
the components in a composite pixel spectrum obtained from a given mixture of elements. This problem is known as
Hyperspectral Unmixing.

Formally, the problem may be considered as follows: Assuming we know the spectra of K elements
(endmembers), we must determine the unknown composition of a cocktail of the mentioned elements using the
radiation spectrum of a pixel with  this mixture.

The conventional digital algorithms to solve this problem is fairly slow, since serial computation is implied.
The difficulty increases in the presence of  Miscalibration Problems on the Hyperspectral Sensor (MPHS).
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The main intention of this paper is to explore the possibility of using a Neural Networks Methodology to
obtain a reliable, robust and efficient solution to the Hyperspectral unmixing with MPHS, based on the inherent
parallelism of neural networks.

A method based on the Optical Neural Network to solve the hyperspectral unmixing was presented by
Barnard and Cassasent (Barnard et al., 1989). One of the main inconveniences of this approach is the lack of
uniqueness of the proposed solution, and another is the MPHS no assumption.

The possibility of using the Multiple Regression Theory to solve the same problem, granting an optimal
solution in terms of uniqueness, has been developed by D�az et al. (D�az et al., 1992) This approach is based on the
use of the Pseudo-Inverse Matrix, supported by a Linear Associative Memory, built using PyleÕs algorithm. One of
the advantages of this method is the MPHS  treatment.
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2. ALGORITHMIC METHOD.

In  o rder to des cribe th e alg orithm ic metho d sug ges ted in the pr esent wo rk, it m ust b e taken into accoun t that a Co mp osite
Sp ectru m x m ay  be seen  as  a N- dimen sio na l v ector , w hich is bu ilt so rting  th e emission  in ten sities ass ociated to each
en er gy chann el vs. the chann el num ber, where N is the to tal n umb er  of  en er gy chann els :
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bein g xn th e intens ity m eas ur ed as th e n umb er  of  ph otons  wh os e ener gy  is  co mp ris ed in  th e n- th  en er gy
ch an nel's in ter val.

In  this  way, a En dm emb er Sp ectrum  is a s pectr um of th e s ame n atu re, b ut pro du ced  by  an In divid ual S our ce.
We d eno te th ese sp ectra as  rk , w ith 0 £ k £K- 1.  The set o f K en dm emb ers  v ectors  is n amed the Referen ce Set, an d it m us t
be evaluated  in  ad vance. F or  th e s ak e o f com pactness , it is den oted as a Referen ce Ma trix R com pos ed by  th e r ef erence
co lu mn vecto rs:
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In  a gener al sense, the set of Com po site S pectr a is the set of all p oss ible spectr a that m ay  be pr od uced b y a
linear com bination  o f all elements  b elo nging  to  th e Referen ce Set. Wh en the Referen ce Set is com pos ed  by  K lin ear ly
in depen den t vector s, th is wo uld  resu lt in a    K- dimen sio na l Vector  Sp ace, in teg rated  by  all the vectors  y g iv en by:
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wh er e c is the Co ntrib ution  Vecto r,  d efined  as:
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an d where ev ery  co ntrib ution  ci is  a fu nctio n o f the relativ e intens ities of  th e  i- En dmember  on  th e Com pos ite
Sp ectra. O ur  go al is  to  es timate c as su min g that R an d y ar e kno wn.

The general solution method proposed here is based on the Hopfield Recurrent Neural Network (HRNN). It
is a flexible, efficient and robust approach to solve the problem (P�rez et al., 1995). The Gradient Method for
minimizing errors is used to assure the convergence of the algorithm. The use of this model is fully justified when
the spectrum formation in the Hyperspectral unmixing is a linear process (P�rez et. al.,1996)(Aguilar et al., 1998)

3. HR NN  FO R M PH S S PEC TR A.

In order to explore the performance of the HRNN algorithm to solve the hyperspectral unmixing with
MPHS, we must know that when MPHS are implied in the hyperspectral unmixing, due to numerous causes, the
Instrumentation Transfer Function (ITF) that generates the different spectra, even though the spectrum is composed
of an only reference, it can not be considered constant along the time, assuming different values of ITF for each
measured spectra.

As far as the present research is concerned, we assume that the main characteristics of the ITF, the gain a
and the offset b, will only appear in the formation of the composite spectrum.

When drifts in gain and offset are considered, the obtained spectrum y(n) will be related with the zero-drift
one y(m) as follows:

( ) ( )y n y am b= + (Error! Unknown switch argument.)

wh er e m is the bin num ber  asso ciated w ith  the energ y channel interval E-dE to E+dE.

Initially, we assume, without a loss of generality, that both n and m are real continuous variables. Typically,
under the reference conditions we take the gain a=1 and the offset b=0. Otherwise we try to approximate the
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spectrum taken under different conditions using the first order TaylorÕs Expansion of the equation (5), which may be
written as:
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This expression approximates the spectrum taken under non-zero drifts y(n) as a linear expansion of the
same spectrum taken under ideal zero drifts y(m), its first derivate multiplied by the channel number, and its first
derivate.

Using the expressions (3) and (4), we can express the y(n) spectrum as:
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Then, we consider the generalized contributions vector as:
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In order to solve the MPHS problem using the TaylorÕs expansion (6) and taking into account (7), it is
necessary to expand the Reference Set from order K to order 3K to include the first derivate  r0

1 and r0
2.

The spectrum drifts can be inferred from the set of generalised contributions c*. This possibility can be
exploited to correct the non-zero drift composite spectrum y partially, which may be recursively processed with the
HRNN to obtain a new and more refined estimation of the contributions of the components and drifts a and b.

To sum up, the recursive application of the HRNN using the Expanded Reference Set allows us to obtain
both quantified and approximations of the influence of each component and an estimation of the drifts values a and
b.

4. R ESU LTS .

Through the present work, we have evaluated the performance of the HRNN algorithm with non-zero drift
spectra, expanding the Reference Set. The obtained results show that applying recursively the HRNN algorithm to
problem spectrum, we obtain gain and offset values that allow us to rebuild a new spectrum y^   being an optimal
approach to y.

To evaluate the HRNN performance we use the sin of the angle between y and y^.

Some experiments have been designed to measure the influence of different parameters:

· Level of Noise in the Mixture Spectra.
· Proportion of Elements in the Mixture
· Correlation between Components.
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Level of Noise in the Mixture Spectra.

The figure 2 represents the first set of experiments. It measures the effects of noise in the behaviour of the
method.
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Figure. 2  Level of Noise in the Mixture Spectra.

Proportion of Elements in the Mixture.

In the figure.3 we can see that the proportion between components has a little influence in the resulting
error.
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Figure. 3.  Proportion of Elements in the Mixture.

Correlation  between  Components.

The figure 4 shows the ability of the method to distinguish between two different spectra as a function of
their relative correlation coefficient
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Figure. 4.  Correlation between Components.

5. SUMMARY AND CONCLUSIONS.

We have developed a neural tool to apply the HRNN method to multispectral images; this method seems
more reliable than other traditional methods.

The method is able to resolve AVIRIS images at a reasonable computational cost, obtaining images of the
proportion of each endmember on the original image.

Figure 5 Original Band of the AVIRIS
image

Figure 6 Grey scaled Endmember
contribution

Figure 5 shows the AVIRIS band image where the HRNN neuronal tool was applied.

Figure 6 shows the resulting image of the quantification of one endmember of this image; higher pixel
values are associated with high contribution zones of the component.
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